Beckman's physics of racing

Really good articles I found here, I’ll slowly start punching them into this site so we can have the info here.

http://phors.locost7.info/contents.htm

Introduction to the PhORS articles
By Brian Beckman

"I started this series in 1991 for my local racing club’s printed newsletter. The web had just been born, though the Internet was not yet public. Nonetheless, I distributed the articles over the Internet at that time and they become reasonably well known, especially amongst the autocrossing community in the US. The first 13 parts were written in 1991, so they contain some very dated ideas, such as using Scheme for writing simulations. However, the entire series is presented here, as originally written. Perhaps at some later time I will consolidate and update the series, but for now, I am focusing on writing new parts. There are currently a number of ‘live threads’ in the discussion that I wish to pursue at length.

My overall goal with the series is to present a fresh outlook on racing physics, understandable to the technically inclined non-specialist. The problems I consider come from a variety of sources. Often, they’re motivated by computer simulation, and just as often they arise from competition experiences. Some of the later articles get very technical, but I always try to balance conceptual discussion, which everyone should be able to understand, with mathematical analysis, which might of interest only to specialists, and with numerical results, which, again, should be universally accessible.

When I first started the series, I purposely avoided the standard reference sources, preferring to figure things out myself from first principles. In the past ten years, a number of superior source books, papers, and programs have become available, and it is no longer sensible for me to avoid them. I’ve had my fun, now it is time to ‘get real.’ So, in the later articles, I refer to the well known books by Milliken, Gillespie, Genta, and Carroll Smith; as well as to free simulation packages such as RARS, TORCS, and Racer.

There is a tremendous amount of activity in racing simulation nowadays that computer hardware is fast enough to permit extremely detailed modeling of racing cars in real time. The realism of Grand-Prix Legends, for instance, was unimaginable in real time in 1991. Despite this growth, I continue to hope that the Physics of Racing series can fulfill its original dual roles of translating racing lore and craft into hardcore physics and of making that physics understandable to real-world working race drivers and teams.

Finally, I wish to point out that these articles are FREE. I retain the copyright ONLY to prevent the kind of theft that would make the articles difficult to copy, meaning that I grant to everyone, everywhere a perpetual, transferable, universal, royalty-free license to copy, host, post, translate, convert, transform, and reproduce the articles in any form whatever, asking only that the content and attribution not be changed and that the rights of anyone, anywhere to further copy the articles not be restricted, say, by charging money for copies."

The Physics of Racing,
Part 1: Weight Transfer

Most autocrossers and race drivers learn early in their careers the importance of balancing a car. Learning to do it consistently and automatically is one essential part of becoming a truly good driver. While the skills for balancing a car are commonly taught in drivers’ schools, the rationale behind them is not usually adequately explained. That rationale comes from simple physics. Understanding the physics of driving not only helps one be a better driver, but increases one’s enjoyment of driving as well. If you know the deep reasons why you ought to do certain things you will remember the things better and move faster toward complete internalisation of the skills.

Balancing a car is controlling weight transfer using throttle, brakes, and steering. This article explains the physics of weight transfer. You will often hear instructors and drivers say that applying the brakes shifts weight to the front of a car and can induce oversteer. Likewise, accelerating shifts weight to the rear, inducing understeer, and cornering shifts weight to the opposite side, unloading the inside tyres. But why does weight shift during these manoeuvres? How can weight shift when everything is in the car bolted in and strapped down? Briefly, the reason is that inertia acts through the centre of gravity (CG) of the car, which is above the ground, but adhesive forces act at ground level through the tyre contact patches. The effects of weight transfer are proportional to the height of the CG off the ground. A flatter car, one with a lower CG, handles better and quicker because weight transfer is not so drastic as it is in a high car.

The rest of this article explains how inertia and adhesive forces give rise to weight transfer through Newton’s laws. The article begins with the elements and works up to some simple equations that you can use to calculate weight transfer in any car knowing only the wheelbase, the height of the CG, the static weight distribution, and the track, or distance between the tyres across the car. These numbers are reported in shop manuals and most journalistic reviews of cars.

Most people remember Newton’s laws from school physics. These are fundamental laws that apply to all large things in the universe, such as cars. In the context of our racing application, they are:

The first law: a car in straight-line motion at a constant speed will keep such motion until acted on by an external force. The only reason a car in neutral will not coast forever is that friction, an external force, gradually slows the car down. Friction comes from the tyres on the ground and the air flowing over the car. The tendency of a car to keep moving the way it is moving is the inertia of the car, and this tendency is concentrated at the CG point.

The second law: When a force is applied to a car, the change in motion is proportional to the force divided by the mass of the car. This law is expressed by the famous equation F = ma, where F is a force, m is the mass of the car, and a is the acceleration, or change in motion, of the car. A larger force causes quicker changes in motion, and a heavier car reacts more slowly to forces. Newton’s second law explains why quick cars are powerful and lightweight. The more F and the less m you have, the more a you can get.

The third law: Every force on a car by another object, such as the ground, is matched by an equal and opposite force on the object by the car. When you apply the brakes, you cause the tyres to push forward against the ground, and the ground pushes back. As long as the tyres stay on the car, the ground pushing on them slows the car down.

Let us continue analysing braking. Weight transfer during accelerating and cornering are mere variations on the theme. We won’t consider subtleties such as suspension and tyre deflection yet. These effects are very important, but secondary. The figure shows a car and the forces on it during a “one g” braking manoeuvre. One g means that the total braking force equals the weight of the car, say, in pounds.

http://img.photobucket.com/albums/v638/Mafdark/01image01.gif

In this figure, the black and white “pie plate” in the centre is the CG. G is the force of gravity that pulls the car toward the centre of the Earth. This is the weight of the car; weight is just another word for the force of gravity. It is a fact of Nature, only fully explained by Albert Einstein, that gravitational forces act through the CG of an object, just like inertia. This fact can be explained at deeper levels, but such an explanation would take us too far off the subject of weight transfer.

Lf is the lift force exerted by the ground on the front tyre, and Lr is the lift force on the rear tyre. These lift forces are as real as the ones that keep an airplane in the air, and they keep the car from falling through the ground to the centre of the Earth.

We don’t often notice the forces that the ground exerts on objects because they are so ordinary, but they are at the essence of car dynamics. The reason is that the magnitude of these forces determine the ability of a tyre to stick, and imbalances between the front and rear lift forces account for understeer and oversteer. The figure only shows forces on the car, not forces on the ground and the CG of the Earth. Newton’s third law requires that these equal and opposite forces exist, but we are only concerned about how the ground and the Earth’s gravity affect the car.

If the car were standing still or coasting, and its weight distribution were 50-50, then Lf would be the same as Lr. It is always the case that Lf plus Lr equals G, the weight of the car. Why? Because of Newton’s first law. The car is not changing its motion in the vertical direction, at least as long as it doesn’t get airborne, so the total sum of all forces in the vertical direction must be zero. G points down and counteracts the sum of Lf and Lr, which point up.

Braking causes Lf to be greater than Lr. Literally, the “rear end gets light,” as one often hears racers say. Consider the front and rear braking forces, Bf and Br, in the diagram. They push backwards on the tyres, which push on the wheels, which push on the suspension parts, which push on the rest of the car, slowing it down. But these forces are acting at ground level, not at the level of the CG. The braking forces are indirectly slowing down the car by pushing at ground level, while the inertia of the car is ‘trying’ to keep it moving forward as a unit at the CG level.

The braking forces create a rotating tendency, or torque, about the CG. Imagine pulling a table cloth out from under some glasses and candelabra. These objects would have a tendency to tip or rotate over, and the tendency is greater for taller objects and is greater the harder you pull on the cloth. The rotational tendency of a car under braking is due to identical physics.

The braking torque acts in such a way as to put the car up on its nose. Since the car does not actually go up on its nose (we hope), some other forces must be counteracting that tendency, by Newton’s first law. G cannot be doing it since it passes right through the centre of gravity. The only forces that can counteract that tendency are the lift forces, and the only way they can do so is for Lf to become greater than Lr. Literally, the ground pushes up harder on the front tyres during braking to try to keep the car from tipping forward.

By how much does Lf exceed Lr? The braking torque is proportional to the sum of the braking forces and to the height of the CG. Let’s say that height is 20 inches. The counterbalancing torque resisting the braking torque is proportional to Lf and half the wheelbase (in a car with 50-50 weight distribution), minus Lr times half the wheelbase since Lr is helping the braking forces upend the car. Lf has a lot of work to do: it must resist the torques of both the braking forces and the lift on the rear tyres. Let’s say the wheelbase is 100 inches. Since we are braking at one g, the braking forces equal G, say, 3200 pounds. All this is summarized in the following equations:

3200 lbs times 20 inches = Lf times 50 inches - Lr times 50 inches

Lf + Lr = 3200 lbs (this is always true)

With the help of a little algebra, we can find out that

Lf = 1600 + 3200 / 5 = 2240 lbs, Lr = 1600 - 3200 / 5 = 960 lbs

Thus, by braking at one g in our example car, we add 640 pounds of load to the front tyres and take 640 pounds off the rears! This is very pronounced weight transfer.

By doing a similar analysis for a more general car with CG height of h, wheelbase w, weight G, static weight distribution d expressed as a fraction of weight in the front, and braking with force B, we can show that

Lf = dG + Bh / w, Lr = (1 - d)G - Bh / w

These equations can be used to calculate weight transfer during acceleration by treating acceleration force as negative braking force. If you have acceleration figures in gees, say from a G-analyst or other device, just multiply them by the weight of the car to get acceleration forces (Newton’s second law!). Weight transfer during cornering can be analysed in a similar way, where the track of the car replaces the wheelbase and d is always 50% (unless you account for the weight of the driver). Those of you with science or engineering backgrounds may enjoy deriving these equations for yourselves. The equations for a car doing a combination of braking and cornering, as in a trail braking manoeuvre, are much more complicated and require some mathematical tricks to derive.

Now you know why weight transfer happens. The next topic that comes to mind is the physics of tyre adhesion, which explains how weight transfer can lead to understeer and oversteer conditions.

I got that exact link in my bookmark. I first learn about his stuff from the old xbox game Forza, he worked on the game using an alternative to Pacejka’s Formula to model tire physics. His articles are what inspired me to get the book “Race Car Vehicle Dynamics”. Skippy’s book “Going Faster” also have some vehicle dynamics stuff in them but in a much simplified format for an easier read. I think a good understand of vehicle dynamics is essential to any driver and not just engineers.

Reference:

Hans B. Pacejka - http://en.wikipedia.org/wiki/Hans_B._Pacejka
Pacejka “Magic Formula” - http://www.racer.nl/reference/pacejka.htm

Brian Beckman Interview in video game physics (73mins) - http://channel9.msdn.com/posts/Charles/Brian-Beckman-The-Physics-in-Games-Real-Time-Simulation-Explained/

Nice, thanks for the links. I need to get my sound working on the laptop so I can hear what he has to say in that video.

This is great! Thanks.

Part 2: Keeping Your Tyres Stuck to the Ground

In last month’s article, we explained the physics behind weight transfer. That is, we explained why braking shifts weight to the front of the car, accelerating shifts weight to the rear, and cornering shifts weight to the outside of a curve. Weight transfer is a side-effect of the tyres keeping the car from flipping over during manoeuvres. We found out that a one G braking manoeuvre in our 3200 pound example car causes 640 pounds to transfer from the rear tyres to the front tyres. The explanations were given directly in terms of Newton’s fundamental laws of Nature.

This month, we investigate what causes tyres to stay stuck and what causes them to break away and slide. We will find out that you can make a tyre slide either by pushing too hard on it or by causing weight to transfer off the tyre by your control inputs of throttle, brakes, and steering. Conversely, you can cause a sliding tyre to stick again by pushing less hard on it or by transferring weight to it. The rest of this article explains all this in term of (you guessed it) physics.

This knowledge, coupled with a good “instinct” for weight transfer, can help a driver predict the consequences of all his or her actions and develop good instincts for staying out of trouble, getting out of trouble when it comes, and driving consistently at ten tenths. It is said of Tazio Nuvolari, one of the greatest racing drivers ever, that he knew at all times while driving the weight on each of the four tyres to within a few pounds. He could think, while driving, how the loads would change if he lifted off the throttle or turned the wheel a little more, for example. His knowledge of the physics of racing enabled him to make tiny, accurate adjustments to suit every circumstance, and perhaps to make these adjustments better than his competitors. Of course, he had a very fast brain and phenomenal reflexes, too.

I am going to ask you to do a few physics “lab” experiments with me to investigate tyre adhesion. You can actually do them, or you can just follow along in your imagination. First, get a tyre and wheel off your car. If you are a serious autocrosser, you probably have a few loose sets in your garage. You can do the experiments with a heavy box or some object that is easier to handle than a tyre, but the numbers you get won’t apply directly to tyres, although the principles we investigate will apply.

Weigh yourself both holding the wheel and not holding it on a bathroom scale. The difference is the weight of the tyre and wheel assembly. In my case, it is 50 pounds (it would be a lot less if I had those $3000 Jongbloed wheels! Any sponsors reading?). Now put the wheel on the ground or on a table and push sideways with your hand against the tyre until it slides. When you push it, push down low near the point where the tyre touches the ground so it doesn’t tip over.

The question is, how hard did you have to push to make the tyre slide? You can find out by putting the bathroom scale between your hand and the tyre when you push. This procedure doesn’t give a very accurate reading of the force you need to make the tyre slide, but it gives a rough estimate. In my case, on the concrete walkway in front of my house, I had to push with 85 pounds of force (my neighbours don’t bother staring at me any more; they’re used to my strange antics). On my linoleum kitchen floor, I only had to push with 60 pounds (but my wife does stare at me when I do this stuff in the house). What do these numbers mean?

They mean that, on concrete, my tyre gave me 85 / 50 = 1.70 gees of sideways resistance before sliding. On a linoleum race course (ahem!), I would only be able to get 60 / 50 = 1.20G. We have directly experienced the physics of grip with our bare hands. The fact that the tyre resists sliding, up to a point, is called the grip phenomenon. If you could view the interface between the ground and the tyre with a microscope, you would see complex interactions between long-chain rubber molecules bending, stretching, and locking into concrete molecules creating the grip. Tyre researchers look into the detailed workings of tyres at these levels of detail.

Now, I’m not getting too excited about being able to achieve 1.70G cornering in an autocross. Before I performed this experiment, I frankly expected to see a number below 1G. This rather unbelievable number of 1.70G would certainly not be attainable under driving conditions, but is still a testimony to the rather unbelievable state of tyre technology nowadays. Thirty years ago, engineers believed that one G was theoretically impossible from a tyre. This had all kinds of consequences. It implied, for example, that dragsters could not possibly go faster than 200 miles per hour in a quarter mile: you can go http://img.photobucket.com/albums/v638/Mafdark/02image01.gif =198.48 mph if you can keep 1G acceleration all the way down the track. Nowadays, drag racing safety watchdogs are working hard to keep the cars under 300 mph; top fuel dragsters launch at more than 3 gees.

For the second experiment, try weighing down your tyre with some ballast. I used a couple of dumbbells slung through the centre of the wheel with rope to give me a total weight of 90 pounds. Now, I had to push with 150 pounds of force to move the tyre sideways on concrete. Still about 1.70G. We observe the fundamental law of adhesion: the force required to slide a tyre is proportional to the weight supported by the tyre. When your tyre is on the car, weighed down with the car, you cannot push it sideways simply because you can’t push hard enough.

The force required to slide a tyre is called the adhesive limit of the tyre, or sometimes the stiction, which is a slang combination of “stick” and “friction.” This law, in mathematical form, is http://img.photobucket.com/albums/v638/Mafdark/02image02.gif

where F is the force with which the tyre resists sliding; µ is the coefficient of static friction or coefficient of adhesion; and W is the weight or vertical load on the tyre contact patch. Both F and W have the units of force (remember that weight is the force of gravity), so µ is just a number, a proportionality constant. This equation states that the sideways force a tyre can withstand before sliding is less than or equal to µ times W. Thus, µW is the maximum sideways force the tyre can withstand and is equal to the stiction. We often like to speak of the sideways acceleration the car can achieve, and we can convert the stiction force into acceleration in gees by dividing by W, the weight of the car µ can thus be measured in gees.

The coefficient of static friction is not exactly a constant. Under driving conditions, many effects come into play that reduce the stiction of a good autocross tyre to somewhere around 1.10G. These effects are deflection of the tyre, suspension movement, temperature, inflation pressure, and so on. But the proportionality law still holds reasonably true under these conditions. Now you can see that if you are cornering, braking, or accelerating at the limit, which means at the adhesive limit of the tyres, any weight transfer will cause the tyres unloaded by the weight transfer to pass from sticking into sliding.

Actually, the transition from sticking ‘mode’ to sliding mode should not be very abrupt in a well-designed tyre. When one speaks of a “forgiving” tyre, one means a tyre that breaks away slowly as it gets more and more force or less and less weight, giving the driver time to correct. Old, hard tyres are, generally speaking, less forgiving than new, soft tyres. Low-profile tyres are less forgiving than high-profile tyres. Slicks are less forgiving than DOT tyres. But these are very broad generalities and tyres must be judged individually, usually by getting some word-of-mouth recommendations or just by trying them out in an autocross. Some tyres are so unforgiving that they break away virtually without warning, leading to driver dramatics usually resulting in a spin. Forgiving tyres are much easier to control and much more fun to drive with.

“Driving by the seat of your pants” means sensing the slight changes in cornering, braking, and acceleration forces that signal that one or more tyres are about to slide. You can sense these change literally in your seat, but you can also feel changes in steering resistance and in the sounds the tyres make. Generally, tyres ‘squeak’ when they are nearing the limit, ‘squeal’ at the limit, and ‘squall’ over the limit. I find tyre sounds very informative and always listen to them while driving.

So, to keep your tyres stuck to the ground, be aware that accelerating gives the front tyres less stiction and the rear tyres more, that braking gives the front tyre more stiction and the rear tyres less, and that cornering gives the inside tyres less stiction and the outside tyres more. These facts are due to the combination of weight transfer and the grip phenomenon. Finally, drive smoothly, that is, translate your awareness into gentle control inputs that always keep appropriate tyres stuck at the right times. This is the essential knowledge required for car control, and, of course, is much easier said than done. Later articles will use the knowledge we have accumulated so far to explain understeer, oversteer, and chassis set-up.

I only read the first part, but there are some GLARING errors there. Enough that i would probably find somebody else to quote.

This stuff is REALLY basic. If he can’t explain braking weight transfer its pretty much all over right there.

Everything in BOLD is WRONG.

Braking causes Lf to be greater than Lr. Literally, the “rear end gets light,” as one often hears racers say. Consider the front and rear braking forces, Bf and Br, in the diagram. They push backwards on the tyres, which push on the wheels, which push on the suspension parts, which push on the rest of the car, slowing it down. But these forces are acting at ground level, not at the level of the CG. The braking forces are indirectly slowing down the car by pushing at ground level, while the inertia of the car is ‘trying’ to keep it moving forward as a unit at the CG level.

The braking forces create a rotating tendency, or torque, about the CG. Imagine pulling a table cloth out from under some glasses and candelabra. These objects would have a tendency to tip or rotate over, and the tendency is greater for taller objects and is greater the harder you pull on the cloth. The rotational tendency of a car under braking is due to identical physics.

The braking torque acts in such a way as to put the car up on its nose. Since the car does not actually go up on its nose (we hope), some other forces must be counteracting that tendency, by Newton’s first law. G cannot be doing it since it passes right through the centre of gravity.
The only forces that can counteract that tendency are the lift forces, and the only way they can do so is for Lf to become greater than Lr. Literally, the ground pushes up harder on the front tyres during braking to try to keep the car from tipping forward.

By how much does Lf exceed Lr? The braking torque is proportional to the sum of the braking forces and to the height of the CG. Let’s say that height is 20 inches. The counterbalancing torque resisting the braking torque is proportional to Lf and half the wheelbase (in a car with 50-50 weight distribution), minus Lr times half the wheelbase since Lr is helping the braking forces upend the car. Lf has a lot of work to do: it must resist the torques of both the braking forces and the lift on the rear tyres. Let’s say the wheelbase is 100 inches. Since we are braking at one g, the braking forces equal G, say, 3200 pounds. All this is summarized in the following equations:

that appears to accurately describe the weight transfer during braking. Can you explain why you disagree? I’ll have to ask the person who sent me it for their input.

Love to learn how the wrong part that you suggested is wrong.

It will be hard to explain on here but i will give it a shot.

the main thing that is wrong with the article is that he states multiple times that all the forces act about the CG which is total nonsense. This in a nutshell is everything that is wrong with the article.

All forces involved in braking weight transfer should be viewed as moments about the front spindle, the point at which the wheel is rotating on. (not the CG)

Part 1: How do the brakes work? They work on friction. The force of friction is F=un, where “u” is the coefficient of friction of your brake pad on your rotor. F is force. Now the harder you push on the brakes the more friction force there is. Pretty obvious.

Now this force acts at a distance. And a force x distance is a torque or moment. The distance here is the diameter of your rotor. so if we multiply the force times the distance that will be the braking moment.

now the braking force at the wheel is less than the braking force on the rotor because the wheel is bigger than the rotor, however the moments will be the same in magnitude. (less force but more distance)

In order for the car to remain in static equilibrium (not do a front flip) then there must be something that resists this moment acting in the opposite direction. That force is the mass of the rear of the car times gravity, or the weight of the rear. Everything behind the front spindle.

This counter moment is greater than the braking moment in static equilibrium.

now here is where the CG comes in although the height of the CG has nothing to do with braking weight transfer at all.

If you have 50/50 weight distribution you have 50% of the weight on the rear. your braking moment cannot exceed that 50% weight multiplied by the distance from the front spindle (the origin) to the rear spindle where the force is applied.

You could also think of it as the entire weight, acting through the DISTANCE from the CG to the front spindle in ONLY the horizontal plane, but this has NOTHING to do with the height of the CG. Nothing at all.

Height of the CG is only a factor in lateral weight transfer.

I’m so ashamed of you.

  1. Who are you

  2. It doesn’t.

Assuming identical braking input, location of input, and mass, please explain to me how vehicle Y with a CG 1000 ft in the air will NOT transfer more weight to the front of the car than vehicle X with CG 1 ft above ground.

Because cars don’t have CG’s 1000 ft off the ground?

I understand your point but the distance from the CG to the spindle in the vertical direction is insignificant compared to the distance from the cg to the spindle in the horizontal direction.

It does make a difference but it is insignificant for the purposes of this discussion.

Cg is usually within a few inches of the spindle, where as the wheelbase is 100 inches or so.

John can I borrow some brain power to setup my brake pressure sensors?

The author also makes generalizations in order to simplify his analysis.

If you are doing the same thing, it’s probably best to refrain from making statements such as “Nothing to do with” or “nothing at all” as if it was true in every case.

We all know 1000 ft is imaginary, but it exaggerates the point to allow for a better visual image of what’s happening.

So basically your saying that the information shared by Dr. Beckman is correct even if you think it is insignificant.

That’s a big step from this

He is talking about the weight transfer is if the height of the CG is the only component in weight transfer…

In my explanation i only talked about braking torque weight transfer.

His example only applies to a car with a 50/50 split and no f/r braking bias.

he is saying that because of the 50/50 and the front and rear are both braking equally there will be weight transfer.

What I am saying is that because of weight transfer, there will not be a 50/50 split and therefore you need to account for longitudinal and vertical forces.

I completely understand your point Os. and its a good one in things like busses and tractors. but race cars generally have low CG’s perhaps below the spindle even.

You really need to establish the vertical and horizontal components of the CG in both axis, and then sum the moments in both directions.

Pleasure to talk engineering with you as always!

i should send you the products of my stresses in rotating rings talk. Tuns out the failure mode was actually in bending as a result of some poor interpolation of a compound curve into angles with a bit of stress concentration added in.

Yeah, lots of assumptions in the paper- just seemed strange to completely ignore the vertical component. I think you hit it on the head though with the last statement… Good discussion. :thumb

I think you’re getting carried away a bit. Yes, the location of the CG horizontally on the chassis will have a greater effect on a vehicle during braking than the height of it in a typical race car, and yes the the height of the CG will cause more pronounced effects during lateral movements.

However, for the sake of understanding the basic concepts of weight transfer by using an example of a vehicle with a 50/50 weight ratio and a wheelbase of 100 inches, he was able to simplify the math to a level suited for me to post this on an online forum. This is not from an engineering text book nor data for a forumula SAE team to calculate and digest.

To say that the information in my post was wrong or a waste of time is simply untrue.