Performance Handling (Road Racing)
**** SUSPENSION THEORY BASICS - by Pierre Dupuy
When you get used to taking corners much, much faster than you ever thought possible in your car, with absolutely no perceivable body sway, tire squeal, or loss of control, you will find it difficult to drive a car with lower handling capabilities - it gets addictive! The right setup will give you this capability. Some weight & weight distribution, suspension, and handling basics before we get into details of modifications:
1.) Minimize overall vehicle weight as much as possible. With no other changes, the lower a car’s weight, the less weight transfer there is in a corner, and the more cornering force a car will generate. A related issue is front/rear weight distribution - the closer to a 50%/50% distribution this is, the easier it will be to set up the car for maximum cornering. The handling will also be more balanced, predictable, and controllable. One easy way to help distribute weight more evenly is to relocate the battery to the trunk area. There are kits available to do this from a number of suppliers. Be sure you use the best quality, heaviest gauge battery cable possible to avoid increasing electrical resistance and be sure the battery is well-anchored.
2.) Minimize suspension unsprung weight for best handling. Unsprung weight is what is on the outboard end of the suspension - what is not being “sprung” by the suspension. This includes wheels, tires, brake components (rotors, calipers, drums) suspension arms, spindle, rear axle and associated brake components, and the leaf springs. By reducing unsprung weight you are reducing mass in motion in the suspension. Less weight moving up and down means the suspension can react more quickly to changing road surfaces and keep the tires planted on the ground better. This all equals higher acceleration traction, cornering traction, and overall better handling and road feel.
3.) Choosing spring rates, other suspension components. Generally, there are two “schools of thought” in setting up a car suspension for cornering / handling.
-a) soft springs/stiff (thicker) anti-sway bars
-b) stiff springs/soft (thinner) anti-sway bars
Both of the above have some (+) and (-) . The soft spring/stiff anti-sway bar setup, with matched shock absorbers, is, in my opinion, probably the best for an all-around (race and street) car as it gives you a very flat cornering car with a liveable ride on the street. Either approach will require a high performance shock absorber matched to the spring rates you are using. I ended up using the advice of some other SCCA members with 2nd generation camaros and generally went with the Guldstrand Engineering recommended spring rates, anti-sway bars, and shock absorbers on my car. The stiff spring/soft anti-sway bar approach also gives you a flat cornering car but I would recommend this more for a car that will see little if any street use as the ride is extremely harsh and best suited for the smooth surface of a race track. Cars I have seen set up this way have used 700 + lbs/in front springs, 190 to 200 + lbs/in rear springs, a 1" to 1 1/4" fr. anti-sway bar, and often a small or no rear anti-sway bar.
For those who have not heard of either Dick Guldstrand or Herb Adams, both of these have been involved with GM F bodies for many years. Dick Guldstrand has been involved with car racing (dirt track, oval track, road racing) and race car building since the late 50’s. His area of specialty is GM car suspension, including the F body (camaro). He has an engineering degree and has also worked in the aerospace industry. His Guldstrand Engineering website is www.guldstrand.com - good source of parts/technical info for F body suspension and related hi-perf modifications. Also reachable at 11924 W. Jefferson Blvd., Culver City CA 90230 (310) 391-7108. Herb Adams is an engineer who also has many years of experience with GM cars, racing, and particularly the F body. He worked at GM early on with the Pontiac Trans-Am project (suspension in particular). I couldn’t find a web site for his company, his high-performance auto parts business is: Herb Adams VSE, Monterey, CA 93940, (831) 649-8423.
Balancing handling by adjusting front vs. rear roll stiffness (This applies to the dynamics of really any front engine, rear wheel drive car. I have little experience with front wheel drive cars and hope to never see the day of a front wheel drive camaro!): Note: with the specs of the setup I describe further below (springs, anti-sway bars, shock absorbers, suspension alignment, etc) I ended up with very flat cornering and neutral handling car which needed little adjustment of front vs. rear roll stiffness. Varying tire pressure and changing front anti-sway bar bushing material is about the only change I have had to do to “dial-in” the suspension for different track conditions and for street use.
TIP: Before you do anything else, try adjusting front vs. rear tire pressure. This is easily done and you would be surprised at what a difference a 2 to 5 PSI change can make. Try adjusting in 2 PSI increments, and record the pressures that work (cold pressures, for repeatability) so you can duplicate them again in the future at different tracks, etc. - be aware that differing air temperature will have an effect on pressures.
The ideal end state is a neutral handling car which neither understeers or oversteers in a constant turn at a constant speed. A well set up car can be pushed into oversteer by more throttle, and back toward understeer by backing off the throttle - you can “steer” a well-balanced car by the throttle alone.
1.) If you car understeers too much (the front of the car wants to “push” out of the turn and it takes excess steering effort to keep it in the turn, you have too much front roll stiffness, and possibly the wrong tire pressure (too low). You need to reduce this front roll stiffness. What is happening is that the front tires are not able to maintain enough traction and are pushing (really sliding) out of the turn. The technical term for this lack of cornering traction is “slip angle”. The more a tire loses cornering traction, the higher a “slip angle” it is said to have. In this case, the front tires have a higher slip angle than the rear tires. This causes the nose of the car to slide out of the turn and is commonly called “understeer”. You are most likely not aware this is happening because there is not enough “slip” to feel, nor enough tire squeal to hear. If you have a good set of high-performance tires, and do not need to upgrade them, follow the advice below to balance handling (assuming all the other suspension parts are installed and chassis work is done). If not, I would recommend you invest in good tires before you do any further suspension tuning. Tires are the only point of contact where all the hard earned $ you invested in suspension and other hardware actually meet the road. Good high-performance will make the single biggest difference in overall car handling and especially cornering (see tire section for tire/wheel size/type recommendations). To adjust the suspension and reduce understeer: