pretty cool write up on exhausts

cross posted from 300zxclub.com. long long read, but i found it really interesting and informative.

Please read the whole thing, before posting a reply, and please do not delete. We are all titled to our own opinions, and i am not flaming,degrading or doing anything wrong to anyone. (very long) http://300zxclub.com/images/smilies/popcorn.gif

I, coming from the Toyota mr2 community, before that, turbo Mazda mx6’s, and before that turbo supra’s, am looking to purchase a 300zx tt, as my next car, before i move on to a toyota supra tt. I thing that that frustrates me, is the old school philosophy that is extremely prevalent in the z32 community. I don’t know who started it, but anyone who has read Maximum Boost by Corky Bell, knows that it states that a 2.5 inch exhaust does not become a restriction until 450-500hp is achieved.
Corky’s chart:

Ha, I guess its backwards that people get better e.t.’s with a open down pipe then a full exhaust.
And to back this up: From KO racing (http://www.koracing.net)

Unwilling to simply accept that for granted, we have been conducting our own testing, to determine where 3 inch diameter pipe becomes an advantage on the 3S-GTE, found in the MR2 Turbo (SW20), and Celica All Trac (ST165, ST185 & ST205). After extensive testing, we have found that point to be 300 rear wheel horsepower, which is substantially lower than Corky would have us believe. At 300 rear wheel horsepower, we were able to make the same RWHP at one less PSI of boost, and reach 200 foot-pounds of rear wheel torque 300 RPM sooner by upgrading from 2.5" to 3" down pipe and exhaust.

I know that a Z32 is a v6, and running a true dual exhaust means that each exhaust has 1.5 liters, however 2.5 inch diameter is not even equal to 3.2 inches diameter on a single system.

Turtleboy here on these forums is thoroughly convinced that 2.5 inches is the right thing over three inches, and his one word: Backpressure

The following excerpts are from Jay Kavanaugh, a turbosystems engineer at Garret, http://300zxclub.com/images/smilies/boink.gif responding to a thread on http://www.impreza.net regarding exhaust design and exhaust theory:
“Howdy,
This thread was brought to my attention by a friend of mine in hopes of shedding some light on the issue of exhaust size selection for turbocharged vehicles. Most of the facts have been covered already. FWIW I’m an turbocharger development engineer for Garrett Engine Boosting Systems.
N/A cars: As most of you know, the design of turbo exhaust systems runs counter to exhaust design for n/a vehicles. N/A cars utilize exhaust velocity (not backpressure) in the collector to aid in scavenging other cylinders during the blowdown process. It just so happens that to get the appropriate velocity, you have to squeeze down the diameter of the discharge of the collector (aka the exhaust), which also induces backpressure. The backpressure is an undesirable byproduct of the desire to have a certain degree of exhaust velocity. Go too big, and you lose velocity and its associated beneficial scavenging effect. Too small and the backpressure skyrockets, more than offsetting any gain made by scavenging. There is a happy medium here.
For turbo cars, you throw all that out the window. You want the exhaust velocity to be high upstream of the turbine (i.e. in the header). You’ll notice that primaries of turbo headers are smaller diameter than those of an n/a car of two-thirds the horsepower. The idea is to get the exhaust velocity up quickly, to get the turbo spooling as early as possible. Here, getting the boost up early is a much more effective way to torque than playing with tuned primary lengths and scavenging. The scavenging effects are small compared to what you’d get if you just got boost sooner instead. You have a turbo; you want boost. Just don’t go so small on the header’s primary diameter that you choke off the high end.

Downstream of the turbine (aka the turboback exhaust), you want the least backpressure possible. No ifs, ands, or buts. Stick a Hoover on the tailpipe if you can. The general rule of “larger is better” (to the point of diminishing returns) of turboback exhausts is valid. Here, the idea is to minimize the pressure downstream of the turbine in order to make the most effective use of the pressure that is being generated upstream of the turbine. Remember, a turbine operates via a pressure ratio. For a given turbine inlet pressure, you will get the highest pressure ratio across the turbine when you have the lowest possible discharge pressure. This means the turbine is able to do the most amount of work possible (i.e. drive the compressor and make boost) with the available inlet pressure.

Again, less pressure downstream of the turbine is goodness. This approach minimizes the time-to-boost (maximizes boost response) and will improve engine VE throughout the rev range.
As for 2.5" vs. 3.0", the “best” turboback exhaust depends on the amount of flow, or horsepower. At 250 hp, 2.5" is fine. Going to 3" at this power level won’t get you much, if anything, other than a louder exhaust note. 300 hp and you’re definitely suboptimal with 2.5". For 400-450 hp, even 3" is on the small side.”

"As for the geometry of the exhaust at the turbine discharge, the most optimal configuration would be a gradual increase in diameter from the turbine’s exducer to the desired exhaust diameter-- via a straight conical diffuser of 7-12° included angle (to minimize flow separation and skin friction losses) mounted right at the turbine discharge. Many turbochargers found in diesels have this diffuser section cast right into the turbine housing. A hyperbolic increase in diameter (like a trumpet snorkus) is theoretically ideal but I’ve never seen one in use (and doubt it would be measurably superior to a straight diffuser). The wastegate flow would be via a completely divorced (separated from the main turbine discharge flow) dumptube. Due the realities of packaging, cost, and emissions compliance this config is rarely possible on street cars. You will, however, see this type of layout on dedicated race vehicles.

A large “bellmouth” config which combines the turbine discharge and wastegate flow (without a divider between the two) is certainly better than the compromised stock routing, but not as effective as the above.
If an integrated exhaust (non-divorced wastegate flow) is required, keep the wastegate flow separate from the main turbine discharge flow for ~12-18" before reintroducing it. This will minimize the impact on turbine efficiency-- the introduction of the wastegate flow disrupts the flow field of the main turbine discharge flow.
Necking the exhaust down to a suboptimal diameter is never a good idea, but if it is necessary, doing it further downstream is better than doing it close to the turbine discharge since it will minimize the exhaust’s contribution to backpressure. Better yet: don’t neck down the exhaust at all.
Also, the temperature of the exhaust coming out of a cat is higher than the inlet temperature, due to the exothermic oxidation of unburned hydrocarbons in the cat. So the total heat loss (and density increase) of the gases as it travels down the exhaust is not as prominent as it seems.
Another thing to keep in mind is that cylinder scavenging takes place where the flows from separate cylinders merge (i.e. in the collector). There is no such thing as cylinder scavenging downstream of the turbine, and hence, no reason to desire high exhaust velocity here. You will only introduce unwanted backpressure.

Other things you can do (in addition to choosing an appropriate diameter) to minimize exhaust backpressure in a turboback exhaust are: avoid crush-bent tubes (use mandrel bends); avoid tight-radius turns (keep it as straight as possible); avoid step changes in diameter; avoid “cheated” radii (cuts that are non-perpendicular); use a high flow cat; use a straight-thru perforated core muffler… etc.”
"Comparing the two bellmouth designs, I’ve never seen either one so I can only speculate. But based on your description, and assuming neither of them have a divider wall/tongue between the turbine discharge and wg dump, I’d venture that you’d be hard pressed to measure a difference between the two. The more gradual taper intuitively appears more desirable, but it’s likely that it’s beyond the point of diminishing returns. Either one sounds like it will improve the wastegate’s discharge coefficient over the stock config, which will constitute the single biggest difference. This will allow more control over boost creep. Neither is as optimal as the divorced wastegate flow arrangement, however.

There’s more to it, though-- if a larger bellmouth is excessively large right at the turbine discharge (a large step diameter increase), there will be an unrecoverable dump loss that will contribute to backpressure. This is why a gradual increase in diameter, like the conical diffuser mentioned earlier, is desirable at the turbine discharge.

As for primary lengths on turbo headers, it is advantageous to use equal-length primaries to time the arrival of the pulses at the turbine equally and to keep cylinder reversion balanced across all cylinders. This will improve boost response and the engine’s VE. Equal-length is often difficult to achieve due to tight packaging, fabrication difficulty, and the desire to have runners of the shortest possible length.”
"Here’s a worked example (simplified) of how larger exhausts help turbo cars:
Say you have a turbo operating at a turbine pressure ratio (aka expansion ratio) of 1.8:1. You have a small turboback exhaust that contributes, say, 10 psig backpressure at the turbine discharge at redline. The total backpressure seen by the engine (upstream of the turbine) in this case is:
(14.5 +10)*1.8 = 44.1 psia = 29.6 psig total backpressure
So here, the turbine contributed 19.6 psig of backpressure to the total.
Now you slap on a proper low-backpressure, big turboback exhaust. Same turbo, same boost, etc. You measure 3 psig backpressure at the turbine discharge. In this case the engine sees just 17 psig total backpressure! And the turbine’s contribution to the total backpressure is reduced to 14 psig (note: this is 5.6 psig lower than its contribution in the “small turboback” case).
So in the end, the engine saw a reduction in backpressure of 12.6 psig when you swapped turbobacks in this example. This reduction in backpressure is where all the engine’s VE gains come from.

This is why larger exhausts make such big gains on nearly all stock turbo cars-- the turbine compounds the downstream backpressure via its expansion ratio. This is also why bigger turbos make more power at a given boost level-- they improve engine VE by operating at lower turbine expansion ratios for a given boost level.

In conclusion
As you can see, the backpressure penalty of running a too-small exhaust (like 2.5" for 350 hp) will vary depending on the match. At a given power level, a smaller turbo will generally be operating at a higher turbine pressure ratio and so will actually make the engine more sensitive to the backpressure downstream of the turbine than a larger turbine/turbo would. As for output temperatures, I’m not sure I understand the question. Are you referring to compressor outlet temperatures?

So for everyone spending thousands of dollars on turbo upgrades, and another sixteen hundred dollars on a turbo back exhaust, please realize that just because your dads dad said it, doesn’t mean that its true. The only other community that even has a small amount of 2.5 inch turbo exhaust users is the VW/Audi community, largely in part to AWE tuning. A 3.5 inch turbo back exhaust on a mk3 supra turbo is about 80whp. I am positive that if people here jumped out of the 2.5 inch band wagon, we all could see a lot better hp gains for over a grand of money spent. I, if I decide to get a z32 tt, plan on running at least a 3inch down pipe, and a 3.5 inch exhaust, after all I am trying to make my car faster. And if I was to lose some low end torque, it could not be more then a couple of pounds, and with a car the weighs about a ton and a half, who would really notice, plus with the turbo spooling faster the power band would move to the left and right. After all, why do most racers run open down pipes? To save weight? No a full titanium exhaust doesn’t even weigh 20lbs.

I know this will get a few people mad, but please I think its better for the community as a whole.
Steve o.

Good stuff. That power to exhaust diameter chart is pretty interesting.

according to the chart i should be like 2.25" maybe i am losing power…by losing exhaust velocity

Good read. Went into some good detail explaining the difference in theory behind designing an NA exhaust and a turbo exhaust.

my head hurts

cross posted to Maxima.org